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AN INTERFACE CRACK BETWEEN ELASTIC
MATERIALS WHEN THERE IS DRY FRICTIONf
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An analytic solution of the plane problem of a crack (finite or semi-infinite) along the interface between two elastic half-planes
is given. Under tensile and shear forces, the crack opens over an interval (unknown in advance). In the vicinity of the crack tips
the edges join smoothly and Coulomb’s law of dry friction applics. The materials are perfectly bonded everywhere except along
the crack. A closed exact solution is found in the case of a semi-infinite crack. The slip direction, the slip zone length, and formulae
for the contact stress and displacement jumps are determined. The problem of a finite crack is reduced to the vector (third-
order) Riemann problem in the theory of analytic functions, for which an effective solution is constructed by the method proposed
in [1). An explicit relationship between the smaller and larger slip zone lengths is found by asymptotic analysis. A numerical
analysis is carried out. Situations are determined in which the coefficient of friction has practically no effect on the length of the
slip zone (to within 5%) and when the effect is substantial (20% or more). An effective analytic solution is found for Comninou’s
equation [2], which corresponds to the problem of an interface crack ignoring the friction between its edges.

The introduction of contact slip zones without friction in order to prevent the crack edges from going
too far in the direct passage from bonding to separation [3] was proposed in [2, 4], where the problem
was reduced to a singular integral equation, which was solved numerically. The exact solution of this
equation was constructed in [5, 6]. The explicit solution of the problem of a crack with one section along
which the edges overlap (ignoring friction) in a uniform stress field was found in [7] (this solution was
used there to find an asymptotic solution of the problem with two sections along which the edges overlap)
and in [8]. The case of a non-uniform stress field was considered in [9]. In [10] it was proposed take
dry friction into account in the contact slip zone. In [11] the problem of an interface crack with friction
was reduced to a singular integral equation, for which a numerical method was used. The problem of
a semi-infinite interface crack was considered in [12] using other models.}

1. A SEMI-INFINITE INTERFACE CRACK WHEN THERE IS
CONTACT FRICTION

Consider an elastic plane consisting of two half-planes IT; and IT, with constants of elasticity Gy, v;
(I1;: y > 0) and G,, v, (Il,: y < 0). Along the interface between the media there is a semi-infinite crack
(0 < x < 0,y = *0) which is acted on by concentrated normal and tangential loads (Fig. 1)

y=20=~TO(x-b), a<x<eo (1.1)

Oy |y-s0= - PO(x-b), T,

applied to the crack edges at a given point x = b. The crack is open over the interval (a < x < o): the
tangential and normal displacements 4 and v undergo a jump with

{(V)(x) = 0(x,-0)-v(x,+0) < 0, a<x<ee (1.2)

At an a priori unknown point a (0 < a < b) the crack edges join smoothly

(V)(x)=0, O<x<a; %(x,i())—)O, x—azt0 (1.3)

Since the normal displacements are continuous in the slip interval, the stresses o, (x, +0) must be
compressive [2, 13].

1Prikl. Mat. Mekh. Vol. 59, No. 2, pp. 290-306, 1995.
1See also KIPNIS L. A., The slip line at the tip of an interface crack between different media. Uman, 1989. Deposited at
Ukrain. Nauchno-Issl. Inst. Nauchno-Tekhn. Inform. 2.01.89. No. 78.
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Fig. 1.

o_v(x,:tO)s 0, 0<x<a

In the interval 0 < x < a the tangential displacement is discontinuous and the tangential and normal
stresses are related by the law of dry friction

1,, =ho,, y=10, O<x<a (14)

where || is the coefficient of friction. The sign of p is verified a posteriori from the condition p =
sgn {u)(x) for 0 < x < a. For example, for the chosen parameters of the problem p < 0 will be considered
correct if it turns out that u(x, +0) > u(x, —0) everywhere inside the slip zone (in this case 1,(x, +0)
>0by(24))forO<x <a.

We introduce the jumps

X1 (x)=(0v/3x), ¥, (x)=(du/ax), |x|<e (15)
suppy; <la,), suppX, [0, <)

and use them to express the stresses 6, and 1,, fory = +0

0,(x.10)=— " | Lf—i’dhm-xz(x)

'c,y(x,iO)=- & -k (x), [l <o

TXz(&)
06 (1.6)

= 2G, . Ms=%0K3 + K[, Ki=
(6+K)(1+0K,) = 2

k;=3-4v; j=12 6=GG;

Substituting (1.6) into (1. 1) taking (1.4) into account we obtain the system

Xl(g) ___P
I = dE + 1 (%) -

+

d(x-b), a<x<o

B IX1(§)d§+ ;;f_z_(idg.;.n,(xﬂuyxz(x)_ @

=(xp, ) (T -pP)B(x-b), 0<x<oo; y=p_p7

of two singular integral equations. Using Mellin’s theorem on convolution, we can reduce this system
to a system of functional equations, which is equivalent to the Riemann problem for a pair of functions

2
d)"(s)r._w () Poctgmsw-Ty”,,,’ sel’
HY +ctg ns HY +cCtgRs
(1.8)
T:Re(s) =Y, €(-€,0) (0<e<1), A=ba' >1
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1! -
O (s5)= 0, (at,0)t'dt, ®*(s)= Nt dt
() K‘#n{ y(at,0) (s) {Z(a)
1.9)
By =(bqu )P, Ty=(bxu,)'T
We transform the boundary condition (1.8) into
D () - _ prroty s RctigRs+ LA
¥ =L"(s)®"(s)+ —— W (s 1.10
L @O gL T @ (19
L (s)= uol"(—s.)r(l—a-s).  L(s)= I"(1+.s)I'(a+s) .
I(¥%-s-i8)(%~s+id) F(}+s+id)(%+s5-id)
_1 L L
a.—narcctgp.ye(o,l), )] 21tlnl—y
sinna - < C,
o= s ¥ (s)—,.gls—s,,
$2n-1 =}/2—i8—n’ S =E2n_-l-’ C2n =C2n—l ("=1'2"") (111)
Canor = (Py —iTyyctgnd) sinmr‘(n-a+}§+i8)l‘(n+i8-}§) (1.12)

28T ()T (n+2i8)A"*5-%

The function ¥ (s) is analytic in the domain D™(Re (5) > v,), and in D* it has poles at the same points
as the second term on the right-hand side in (1.10). The choice of the coefficients C, in (1.12) enables
us to neutralize these poles (the points s, become removable). Liouville’s theorem applied to (1.10)
yields the following formulae for the solution of (1.8)

O (5)=L" (¥ (s), ®*(s)=

s+1
[.,,-(S _(Byctgrs + Toy) ] 113)

L*(s) (ctgms +py)L ™ (s)

Taking into account that L*(s) = O(s**), s — e, s € D* and comparing (1.9) with (1.13), we find
by Tauberian-type theorems that o,(x, 0) and y;(x) have integrable singularities asx - a -~ 0 and x —»
a + 0, respectively. To make sure that the crack edges join smoothly at x = a, which is the second
condition in (1.3), it is necessary and sufficient that

C,=0 (1.14)
1

M3

n

(in this case ¥ (s) = O(s7), s — o, |5 — Sa| > ¢, € being a positive quantity as small as desired;
n =1,2,...). Substituting (1.12) into (1.14) we can write (1.14) in the form

Re{['(% +i8 - )T (1+i8)]” (41) /(P - iTy cth 18) x
XF(%+i8-a, %+id, 1+2i8; 1/A)}=0 (1.15)

This equality is a transcendental equation for determining A = b/fa. When A — 1 + 0, Eq. (1.15) can
be represented as follows [4]:

Re{(P - iTy cth RB)A"®[ (% + i — )T (et ~ I){T(~ Y4 + 5 + 0}
XF(%+id-a, +i8, 2-o; 1-1/A)+(1-1/1)*"'T1-a)x
XF(-J+id+a, %+id,a; 1-1/0)]}=0

Note that when G; — o, this equation is not the same as the corresponding equation [1] for a semi-
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infinite punch. This is because in the punch problem the length of the slip zone is determined from the
boundedness of the solution at the point of transition from slippage to bonding, while the length of
the corresponding zone in the crack problem is found from the boundedness when passing from slippage
to separation.

If p = 0 (o = 1/2), Eq. (1.15) has an explicit solution, which is identical with that obtained before in [15]

1 1 Y
A, =ch® —(k+—-0), 0=— t(— ) =0,1,...
¢ =C 28( 3 ) narg:g Pcthn&,k 0,1,

(for P > 0 and T — +eo we have § — +1/2, and for T = 0 we have 6 = 0).
When p # 0, there is also a denumerable set of roots

oi™ = L arctg=A(),
T B(c)

A(G)+iB(6) = (P— iTy cthn8)I'(% +i6 — a)[ [ (1 +i8)] ™" x

XF(%+id—a, %+id; 1+2i5; de ™'%)

Im{A(0), B(0)} =0, A, =Y e™*®

which is an effective iterative scheme for k = 1.
Below we present a number of initial roots A4 for 7/P = 10, ¢ = 0.01, v; = v, = 0.3

+k (m=12,.), o=k
a=a{™"

p=0: 1326 5.846x 10  4.604x10®°  3.626 x 10*
p=-05 1283 5424x10* 4272x10®  3.365 x 104

In order to determine the root A and the sign of p corresponding to a physical solutlon we obtain
computatlonal formulae for the displacement jumps and contact stresses. We set 12x) = {(v)x) and
19(x) = (u)(x). Then, by (1.9) and (1.13), we find using the inverse Mellin transform that

A(x)= -LId’ (s)(a) ds+C?

___a - s+l (x/a)*
xg(x)_-ﬁpb (5) +ctgRs®* (5) - PBA ]Td

where CJ is a constant fixed by the condition x3(2) = 0. Using the Cauchy theorem, we compute the
last two integrals

20(x) = —2—Redicos n(@ +i8) (i)}w Ao(i) —Ag() |} +
: 7o shnd a a

+6[o(B. Ty, x/ b)~Tlg(Ry Ty; 1/A)], a<x<eo

X3 =21 (u +1)sin mon( )(i) "0<x<a

W-id
x3(x) = a .:u:“ Re[(u —iycth nS)( ) Ao('_:.)} +

+b1y(Ty,—Fy; x/b), a<x<eo

_aT(n-Y%+k+id)(n-Y+id+a) -( 1 )
A= 2 T (W) (n +20)0" L it
o0 —_ > 2
Ak(x)=z|r(”+°‘ B0 ooyt k=0,0)

a=t T(MT(n+o0-k)
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2 (J4-is-mlindl
ch nsRe{(PHTycthnﬁsgn]nt)Ze }

MNy(P,T;t)= —m

Now we shall find the contact stresses. To begin with, let 0< x < a. Then

-s-1
O'y(x,O) = mf jd>" (s)(-i) ds = _vq_.t___[_ ch? 1:89( )
27 ¢ a TLsin Lo

Heosm(o+i8) (x/@)* ' A(x/ a)], T,,(x,0)=po,(x,0) (1.16)

= |C(n+ Y% +iS)

Q= X -0

For — < x < 0, by (1.6) we have

¥ (—=n)t"!

W\»IXJ@)‘&’ 1, (x,0)=- KFHJ'X:@(&)‘@

The last two integrals, which are Mellin-type convolutions, can be evaluated using the theorem on
convolution in residue theory

6, (x,0)= X}, (7o) 'Qx/a), —a<x<0

a-1
T, (x,0)= -nﬁt[pn(-;f)+ (--3) ysinma(u? + DA, (5)} —a<x<0

Ho

G_V(x.O)—

2 xYh B X
o,.(x,0)=xpu,| —————Re icosn(a+i8)(-—) A,(-—) -
’ | Tposh2nd a a

—H,(I},,Tb;—x/b)], —o<x<-a

F Sinm . x _%_is x

-I1,(Ty,—-Ry;~x/b)), ~o<x<-a 1.17)

-1
(P, T;t)=—ch nﬁ[nt%(l + t)] (PcosdlInt+ Tycthndsindint)

As in the case of p = 0 [15], for pu # 0 the jump (u)(x) has constant sign in the slip interval only for
the root Aq of Eq. (1.15). For other roots of this equation (#)(x) is a function of variable sign. In the
interval (0, a) the normal contact stress corresponding to A is compressive. We therefore set A = A
in what follows.

In Fig. 2 curves 1 and 2, respectively, represent graphs of the contact stresses o,(x, 0) and
t,,(x, 0) for v; = v, = 0.3, 0 = 0.01 (in this case Yy = 0.2801),b = 1,P =0.1,and T = 1 for p = -0.5
(with @ = 0.7795). The dashed curves represent the graphs for p = 0 (2 = 0.7539). In the same figure
and for the same parameter values we present graphs of the normal and tangential displacement jumps

—)x)G, (A) and —5(x)G; (B). It turns out that for p = ~0.5

0,(x,0)<0, 7,(x,0)>0, 2/(x)=0, 23(x)<0, O<x<a
] 1.18
0,(x,0)=0, 7,(x,0)=0, X} (x)<0, x3(x)<0, a<x<b (1.18)

The corresponding root Ag of Eq. (1.15) for p = 0.5 gives rise to a solution which satisfies all the
inequalities in (1 18) except one, namely, T,(x, 0) < 0 for 0 < x < a (the jump of the tangential
displacement xz(x) being negative in the slip zone as before). This case (i = 0.5) is therefore non-physical.
This situation is also encountered for any other relationships between the loads P (= 0) and T when
0 < y<1/2 (-t < y =< 12) being the admissible values of v+ 0). This fact is especially undesirable when
P =0, T < 0. In this case (v; = v, = 0.3, 6 = 0.01) for b = 1 it turns out that a = 5.47 x 107 for
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p=-05a=508x10"forp =0, and a = 4.73 x 10" for u = 0.5. The functions xoz(x) and
o[l(x, 0) are negative over the whole interval 0 < x < a both for p = 0.5 and p = 0.5. However, the
shear stresses are positive over the slip interval only for p < 0. Analysis of the case -1/2 <y < 0 leads
to the following conclusion: sgn 4 = —sgn v and is independent of the sign of T(P = 0).

As in [15] for u = 0, in the case when p # 0 the normal displacement jump changes its sign at some
distance from b and oscillates at mﬁmty For P =0, 7T < 0, and y > 0 we have xJ(x) < 0 and xox) >
0 in the intervala < x < b, and xl(x) changes its sign for the first time atxy = 1 + £ (€ being small and

= 1). As T/P increases from —o to +o, the value of x; increases from 1 + eto 4 > 1.

As can be seen from the graphs (Fig. 2), the shear and normal stresses increase as x — -0, the shear
stress becoming infinite while the normal stress remains bounded. Analysis of (1.16) and (1.17) confirms
this fact

o(x*"), pu=#0

x—+0: oy(x,0)=0(x°'"), 1,y(x,0)={0, w=0

x—-0: 6,(x,0)=0(1), 1,,(x,0)=0(x*")

The tangential and normal displacement jumps have a logarithmic singularity at the point x = b
(b = 1) where the load is applied.

We shall analyse the dependence of the length a = b/A of the slip zone on the coefficient of friction
|]. In Table 1 we present the values of A for T = P = 1 for some values of ¥ and p.

For y = 0.1 it can be seen that A decreases only by 2.5% as || increases from 0 to 0.5 and by 5.8%
as |p| increases from 0 to 1.0. The larger |7y]|, the more important it becomes to take friction into account
in the slip zone: for y = 0.5, A decreases by 12.3% (by 22.8%) as || varies from 0 to 0.5 (to 1). It turns
out that the smaller the ratio 7/P the more significant (expressed as a percentage) is the dependence
of the slip zone length on the coefficient of friction. Below we give the values of A for y = 0.5

TIP 10 5 3 2 1 0 -1
p=0: 1.08 135 211 406 228 19x10° 1.78x10°
pn=-1: 104 121 176 324 176 153x10° 136x10°

For T/P = 10, A decreases by only 3.7% as . varies from 0 to —1, while for 7/P = -1 it decreases by 23.6%.
For large || we have the following values of the slip zone length (T/P = 1,y = 0.5)

-1 2 3 5 7 10
A 176 141 121 998 900 824

In Fig. 3 curve 1 represents the dependence of 1/A on 6 = G{/G,forv, = v, =03, T/P = 10and p =
—0.5, and curve 2 represents the dependence of the same function on T/P for v, = v, = 0.3, ¢ = 0.01
and p = -0.5.
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Table 1
" y=01 02 0.3 04 0.5
1082, 10722 A A A

0 120 483 725 85.1 228
0.1 119 478 714 833 223
03 118 468 691 79.9 21.1
05 117 458 669 76.5 20,0
1.0 113 433 616 68.7 176

2. THE EXTENSION WITH SHEAR OF A FINITE INTERFACE CRACK
WHEN THERE ARE REGIONS OF DRY FRICTION

Suppose the combined plane IT; U IT, is loaded at infinity
6, =0, T, =-Ty, lxleo
o, =(1-2Ysgny)0y, T, =-Tp, lylceo

(v is the parameter defined in (1.7)), suppose a crack (0 < x < a,y = *0) is open over an interval (b,
< x < by), and for 0 < x < b; and b, < x < a suppose the crack edges are in contact and obey the law
of dry friction. Over the intervals — < x < 0 and @ < x < o the half-planes are completely banded.
Without loss of generality, we can assume that 1y > 0 and y > 0. Then the left slip zone is smaller, i.e.
b, < b, (Fig. 4).

The solution of the problem can be represented as the sum of two terms. The first (the elementary
solution) corresponds to the case when there is no crack and has the form

O, =0y, T, =—Tp, O, =(1-27sgny)o,

xy
(u)=(v) =0, |xl e

The other term is a solution of the following problem H

12 l =-0 l = .
yy=m 0 t"yy=:t0 To» bl<.x<b2

(0,)=(zs)=0. <%> =), <%> =%2(x), lk< oo (2.1)

~ b vy

| m *
54@-— *
| ) , a1
| m, -
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supp; < (by,8,), suppx; <(0,a)
(Tyy +HOy )30 = T — KO, 0<x<by; (T~ UG, ),us9 =Tp + UGy, by <x<a (22)
The coefficient of friction p (by the assumption y > 0 and the analysis in Section 1 J is positive) takes

different signs because the slip direction in (0, b,) is opposite to that in (b,, a). Furthermore, additional
conditions expressed by the inequalities

(V}x)=<0, b <x<b,
G +6,(x,10)< 0, x€(0,b))V(by,a) (23)

must be satisfied. The latter inequality means that the normal stress in the original problem is compressive
in the region where edge joining occurs. The points b, and b, are to be determined from the smoothness
of the crack profile in the vicinity of these points. The cut closure conditions

le (x)dx =0, [x5(x)dx=0 (2.4)
0

complete the formulation of the problem.

We shall reduce the above problem H to a system of two singular integral equations. To do this, taking
(1.5) and (2.1) into account, we substitute the representations (1.6) of contact stresses in terms of x;(x),
%2(x) into the boundary condition (2.2) and obtain

E""'171’1'@—)“g‘"l"-xl(l\f)+&‘j-x-zgdﬁ—|.L|~l_x,2(x)='l:+, 0<x<b,
% h&-x Ro&-x

BB ey s BB v = b <x<a, (23)
n b, é—x o é -X
T3 =X (-Tg T UGy)

where p. and x are defined in (1.6).

We will seck a solution of (2.5) in the class of Hélder continuous functions such that y;(x) is bounded
atx = b, and x = b, and y(»(x) has integrable singularities atx = 0 and x = a is bounded asx — b, and
x - b,y. We set

Aj=bjla (j=12), t(x)=-x"'(1,, £ po,Xx,0)

and introduce the piecewise-analytic functions

1 Ay14,
¢I.(s)=l;'lll(bzf)"’df’ ()= | xnbrTdr
1142 1
1 -
;=] n(@nrdr ¥)=] LbNTds (2.6)
0

d>§(s)=} t.(hv)t'dr, <l>;(s)=°j° t_(at)t'dT
0 1

with jump line I defined in (1.8). Using the Mellin transform we reduce (2.5) to the Riemann vector
problem

D7 (s)= (A /1 Ay) D] (s)

$() = I, ()DT (8)+ A3 U (5)D5 (5) - T, (s +1)!
@3 (5) = A5 1L (5)D] (5) + Ay (5)®3 (5) - A5 DS (5) - (1 - A5 ) (s + 1) M1
Li(s)=p_—(-1y pu, ctgms, Lp(s)=(=1)/pp_+p, cigns (j=1,2)

2.7
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A method of solving problems of type (2.7) was proposed in [1]. We will state the final result, omitting
the construction of the solution

+ —s-1
¢;<s)=—”“‘)+[ﬁ)’ 2209) d>r(s>=(ﬁ'—) ®; (s)

L) M) L9’ Ay
s+1 s+l

@3 (=8Il gy ) X ) g,

Lo(s)  ha(s)Ly(s) by ()L (s)

-5-1
+on__ Ty +e 2 l|2(s) +

Q2 ()=- LR+ I (s) Ly(s)Ry(s)
O3 () =(s+1)7" 1. - (¥ (s), D3(s)=—(s+1)7"1_+ L5(s)Ry(s) (2.8)

Ry(s)=C+egt_(s+ 1)1+ ¥/ (s), R(s)=et.(s+1)" +¥ (s)+¥; (s)
o =—Hg'T(2-0), ¢ =-n(8 + %W (2-a)chnd]”, 1. =1, -1

L@=-fhE s, Go=p L w =2
L=~ ;{i__sl)sl;:}(;;:? B D=y I (51++ l;));((;«:g )
Li(9)=- r(%l-l-f Sggi;_—i B 9= 1'(%F il P :;(11(—%“:-—) i8)
H)= ,i:'ls - j:— a’ ¥ie)= ,g;:—l%&-’ Kl Jg-"fsi

The numbers i, and s; are defined in (1.11), C is an arbitrary constant, and the coefficients 47, B will
be found later.

By the boundedness of 6, and 1,, at x = b, and x = b,, the function #_(b;t) is bounded ast - 1 - 0.
Taking (2.6) into account, by an Abelian-type theorem, we obtain the asymptotic expression ®5(s) =
O(s7!) as s — o with s € D™, which holds for the function defined in (2.8) if and only if

XIBj=0 (2.9)
By (2.6), the closure conditions (2.4) for the cut have the form ®;(0) = ®;(0) = 0, which implies that
C+1 ey +¥'(0)=0, T,e,+¥ (0)+¥;(0)=0 (2.10)

For the functions (2.8) to be analytic in the corresponding half-spaces it is necessary and sufficient that
the coefficients

Ar =A% +CA%, BX=Bi+CB: (2.11)

should satisfy the following infinite Poincaré—Koch algebraic system
w At
Ag =X5"""2p; [—510 + :_eo B+ X —L ]
n

a-2 j=in+j—1
A e +1 - B
B&=(—‘] U s
l=

o0 A +
At = ARaH o+ T.€ 8. + *__ Jjk
=2 p"[n—a+1 o ,E. n-1+j n-o-s; (2.12)

-1
A Y 1.0 e A pA
B, =|—L o —1-8,, + & &
nk (lzjl q"[s,,—l H E(s,,—j+l—a+s,,+sj )
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*k=01;n=123..)

2 2 2
- _Ych’nd ( 1 ) . diu? +1) ( _ s)l
Pn _—an-G)—-r n+ao ——2+l8 s Dp m— +—2 a+i

= l'll—lanm g, = u;s"q,.. d =sinna

icos(o+i®)'(m— Y% —id)[(m+ ¥ —i®)[(m+ o~} id)'(m+ ¥ —a—id)
Om = 27sh ROT2 (m)T2 (m — 2i8)

Dim-1 =G2m (M=12...)
Substituting the second relationship from (2.11) into (2.9), we find that

A S o
C= ——AJ-, Ay=XIBy (k=0,1) (2.13)
0 j=t
Satisfying conditions (2.10), we arrive at the system
0 AT Bt
$A M. A B (2.14)
j=10—j Ag j=a=1+j s;

of two transcendental equations in A; and A,. Since A, is small, 0 < A; < 107, and A, > A, [4, 11}, it
follows that (2.14) can be reduced to a single transcendental equation by approximation. To do this,
we first transform the infinite system (2.12) to the form (k = 0, 1)

T_e = Aj
=A3"%p [_5k0+_+79__28k|+2 L ]

jaint+ j—1

+ _gn-o+l o+ T.€) 5 =1,2..
nk = A2 P..[n_a“ "'+,Z|n ]_1] (n ) (2.15)

B =0 (n=12,.), By =0(n-34,..)
-1 -
__h" - ‘t.ela +N__AL_ =12
ak —(12] for Tk q"[s,,-l k1 ]E’Is,,—j";l—a (n=12)
The coefficients A% can be determined from (2.15) by the recurrence relationships

= xH-a -2 za N" l’ "k = xn—a-&l Za xm-

Ay = Pr (=00 +T_gg(n+0—2)" 18,1

ayy = pylte(n—a+1) 18, +A5 'n"ay)

A%~ lz JkM+l—J

ke = p"h‘lm,gl;&"‘_J','_J1 T = PiX = N
(m=23,..)
Expression (2.13) for C can be transformed into
co_Tetal v § Am =3 Am_ (m=0,1)

j=100— j j=10t+ ] -1
and in place of (2.14) we obtain the equation

a;' (1+ag X(T.e +a7 ) =T_¢ +a

for A, the smaller parameter A, being expressed in terms of A, by
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My =2y8" ), g =—(Co+ [u)(Chio+ fi1)™ (2.17)

A denumerable set of solutions of Eq. (2.16) exists among which it is necessary to choose the maximum
value A; € (0, 1) [7], and also the denumerable set of values of A satisfying the first equality in (2.17)
as well as the inequality A, <A,

Ay =4, exp{(25)‘I argg — 1:15"} (1=12,...)
largg|<

However, the physical solution, i.e. one for whlch inequalities (2.3) are satisfied, corresponds to one
and only one value A, = Mexp {(28) 'arg g — n5°'} (the maximum of the values above).

The dependence of the slip zone length on the friction is shown in Fig. 5 which gives graphs of A",
= 2, — 1 (to enable a comparison to be made with [11] A, is taken in place of A;) as a function of the
coefficient of friction p in the case when Gy/ty = 0 for y = 0.1, v = 0.3, and y = 0.5 (curves 1-3,
respectively). The dashed line represents the graph of A; for y = 0 5 from [11]. As p varies from 0 to
1, the length 1 — A, of the larger slip zone increases by 26% for Yy = 0.5 and only by 5% for vy = 0.1.
The values of A; and A, for p = 0.3 and 6/t = 0 are presented below for various values of

Y 0.1 0.2 0.3 0.4 0.5
M 129x 10  494x10%2® 991x10™® 545x10° 1.15x10°°
A 0.690 0.683 0.673 0.662 0.647

and the values of A, for y = 0.5 with p = 0.3 and p = 107 are presented for some values of 6y/1y (1o
> 0)

Co/To -0.6 -0.4 -0.2 0 0.1 0.2 0.4
p =03 0137 0,239 0.414 0.647 0.754 0.839 0.942
p=103 0.175 0.278 0.449 0,671 0,772 0.851 0.950

The last row is consistent with the corresponding results in {16, 7] for p = 0.

As can be seen, the separation zone increases by a few percent when y (0 < ¥ < 0.5) increases and
1 (0.5 = u = 0) decreases, while it increases several-fold when o/t varies from —0.6 to 0.6.

The formulae for the jumps of the displacement and the contact stresses can be obtained using the
inverse Mellin transform in residue theory. For example, for the normal displacement jump, taking (2.6),
(2.8) and (2.15) into account, we find

20 (x)=I(x)— I(b), by <x<b,

- by o x by "
e 2ol ]

M,,, = T(m)[(m—2i8)[T(%5+m—i®)[(0- %+m—-i8)]", My,_, =M,

Because b, is small, for b; + <x < b, (e > 0) (2.18) can be transformed to the form

cos (o —id) & I‘(m—}é+i8)I‘(m+}4—a+i8)x
ishrd a2y T(m)F(m+2i8)(%—m—id)

T8, 5 A} _{_"'_%*"8
m=%+id iSm+B+id-a-j\b,

In Fig. 6 we show the graphs of -G x}(x) for the case ¢ = 0.01, v; = 0.1, v, = 0.3, u = 0.3 with G/
=-02,0,0.2 (curves 1", 1° and 1*, respectively). As in [7], the crack opening decreascs as the compressive
stress intensity increases.

b
1 (x)= ;Z-Re{
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3. THE EFFECTIVE SOLUTION OF COMNINOU’S INTEGRAL
EQUATION

When 1y = 0 and p = 0, the system of integral equations (2.5) for a crack {4 <x <4,y = +0}
open over the interval [x| < b can be reduced to the following equation (0 <y =< 15) [2, 5]

1 2
¢(n)n( Yﬂ) G
(2N ¥ % acy< 3.1
{yz—n2 y KM, (3-1)

where A = [1 - (b/a)?]? and o(n) = x1(a(1 - n%)"2 The remaining symbols are the same as in Sections
1 and 2. For Eq. (3.1) an exact solution (expressed as a series) was constructed in [5] in terms of elliptic
functions. We shall obtain a solution of this equation in a different form lending itself well to numerical
realization. We denote by @_(x), ¢ (x) the left-hand side of (3.1)for0 <x <Aand 1 <x < e, respectively,
and introduce the Mellin transforms

1 1A
®; (s) = [@(x)x"dx, @ (s)= | o(Ax)x‘dx
A 1
1 " (3.2)
5 (s) = [o_(Ax)x’dx, ®3(s)= Jo,(x)x*dx
0 1

for which we obtain the vector Riemann problem
®F ()= 1""'0] (s)
@ (s) = G()D; () - K1 D3 () - FA-N*)s+ 1), seT (33)
I':Re(s)=7, €(0,1), f=(x,)"' 6,
G()=tg¥ns+y2ctg4rs =K* (5)K(s)

A—yHN(%-s/2)T(1-5/2)
T(-s/2-i/2)FQ-s/2+iB/2)

p=n"'m{a+ma-y"}

L T(s/T(+s12)
K ) =ri7z+B/ DTG 2-B12)

K'(s)=

Solving (3.3) by the scheme of [17], we find that
®; () =K~ @O [ ¥ () + fs + DK DT | (K (9T
O;(s)=fs+ 1) + K ()P () (34)
B2 (5)=—Fls+ 17 + KX )+ s+ 17K DI}
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¥ ()= T, ¥ (=3
j=15—5; ,_1s+s -2
$2;=2j—iB, sy =2j+iB (j=12,..)

The coefficients A form a solution of the infinite Poincaré-Koch system
A+ = xb’m+1A— i A]-
" " j=15j + 8, — 2

A;:}.’M"A‘,‘,,[ L_,5 Al )

3-8y je12-5;-5

.\ L=7")[L(m+iB/2)C(m - v+ip/2T . =
2m-1= n l"(m)l‘(m+¢B) ’ 2m T S2m-1

i 1, Y
Asma =-'(‘1‘_—;'(%)7(m-5+'2—) y Agm = Aoy

fo= %A@ +DA- 1) (ch Yy B)
which can be inverted by means of the recurrence relations

=A™ Z ka—2 A, __xt.-3 Za le -2
k=1

any = £.8,3-5,)" (3.5)

ot = i[l'paz—j_l,nﬂ—j +l"Ba;j,u+l—L] (n=12,.)
Jj=1

= 5m+52j—l_2 sm+32j—2

. ="i' N"ai’/-x.u-j + TS (n=2,3,...)
SN2 5m = S2jm1 2 5m =8

The crack edges join one another at x = +b if and only if ®3(s) = O(s™"), s = e, s € D", which is
equivalent to
iA,-' =0 (3.6)
j=1

by (3.4). The latter condition is a transcendental equation in A. Taking into account the fact that A is
small [2, 5] and using (3.5), we transform (3.6) into

A¥P 4 (ar)'ay +O(A?)=0, A0

Hence we find the explicit approximate values

Ay -4exp{——Barct 12‘;2 n(k;—}é)}’ k=0,1,...

for A. The physical solution oorresponds only to the value AO (for k = 0). For y = 0.4854 we find A¢ =
0.01450 and A. = 1 —bja = 1 - (1 - A} = 1.0517 x 107, which is identical with the result obtained
in [5].

Below we give the values of Ay and A. for some values of ¥

¥ 0.1 0.2 0.3 0.4 0.5
Ao 3.079x10 7664x10° 5143x107* 4.451x 107 1.712x 1072
Ae 4740 x 1002 2937x 107" 1.322x 107 9.906x 10 1.465x 107™*

By (3.2) and (3.4), the solution of Eq. (3.1) has the form
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oo 5;-3 —5;-1
¢(x)=-zl[A;Ej({-)’ +G,.W'(s,)(-;‘:) ’ ] A<x<l
j=

_L(m—iB/2)T(m+%-iB/2)
T (- y?)M(m)T(m—iB)

Eyn=(m=Y%=B12[80-YGou| "+ Epr=Epm

’ GZm—-I =G_2m

For 1 # 0 the problem can be reduced to two equations, which can bé solved independently and differ
from (3.1) only by the right-hand sides, i.e. the method presented is applicable in this case.

4. CONCLUSIONS

1. The effect of friction in problems concerned with an interface crack is much less than in problems
involving a punch for corresponding parameter values, as the coefficient of friction decreases from 1
to 0.1, the slip zone length in Flamant’s problem concerned with a semi-infinite punch when there is
dry friction and bonding [1] increases more than 700-fold, while in the corresponding problem of a semi-
infinite crack the length of this section decreases by a factor of 1.15.

There is a wide range of real parameter values of the problem in which the stresses and displacement
jumps on the interface vary by just a few percent as the coefficient of friction varies from 0 to 0.5 (the
shear stresses in the slip domain are an exception). This makes it possible to use an approximate approach
when considering the class of contact problems involving an interface crack in the presence of friction.

2. In the problem of the indentation of a punch into a half-plane when there is a bonding zone
(-, b) and slip zones (—a, -b), (b, a), if  — 0, then A = b/a — 0, i.e. the bonding domain contracts to
a point as the coefficient of friction tends to zero [18, 1]. It follows that Galin’s problem becomes the
problem of a smooth punch as p — 0 (the boundary conditions degenerate), and its solution becomes
Sadowsky’s solution [19]. On the other hand, for p = 0 and A > 0 we have Fal’kovich’s problem [20}].
However, in [20] bonding prevails almost everywhere in the contact plane: for v = 0.3, b = 0.997a. This
can be explained by the choice in [20] of the root of the corresponding equation from which to determine
the accessory parameter A° which appears in the differential equation to which the problem can be
reduced: the root A3 was taken instead of the value A; = 0 leading to Sadowsky’s solution. For this
choice the contact domain consists of one bonded region in the middle and two small slip sections at
the end. An incorrect situation arises: the shear stresses in (0, b) have fixed sign, while the normal stresses
have variable sign.

The boundary conditions do not degenerate as p — 0 in the problem of an interface crack: the
separation domain and slip zones remain as before, and the corresponding solution is correct. However,
the second (next) root of the corresponding transcendental equation leads to a non-physical solution
also, as in the punch problem.

I wish to thank the referee for his remarks.
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